Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2024: 8864513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304347

RESUMEN

Aim: The present study evaluated the therapeutic effects of luteolin in alleviating pulpitis of dental pulp- (DP-) derived microvesicles (MVs) via the inhibition of protein kinase R- (PKR-) mediated inflammation. Methodology. Proteomic analysis of immortalized human dental pulp (DP-1) cell-derived MVs was performed to identify PKR-associated molecules. The effect of luteolin on PKR phosphorylation in DP-1 cells and the expression of tumor necrosis factor-α (TNF-α) in THP-1 macrophage-like cells were validated. The effect of luteolin on cell proliferation was compared with that of chemical PKR inhibitors (C16 and 2-AP) and the unique commercially available sedative guaiacol-parachlorophenol. In the dog experimental pulpitis model, the pulps were treated with (1) saline, (2) guaiacol-parachlorophenol, and (3) luteolin. Sixteen teeth from four dogs were extracted, and the pulp tissues were analyzed using hematoxylin and eosin staining. Immunohistochemical staining was performed to analyze the expression of phosphorylated PKR (pPKR), myeloperoxidase (MPO), and CD68. Experimental endodontic-periodontal complex lesions were established in mouse molar through a silk ligature and simultaneous MV injection. MVs were prepared from DP-1 cells with or without pretreatment with 2-AP or luteolin. A three-dimensional microcomputed tomography analysis was performed on day 7 (n = 6). Periodontal bone resorption volumes were calculated for each group (nonligated-ligated), and the ratio of bone volume to tissue volume was measured. Results: Proteomic analysis identified an endogenous PKR activator, and a protein activator of interferon-induced PKR, also known as PACT, was included in MVs. Luteolin inhibited the expressions of pPKR in DP-1 cells and TNF-α in THP-1 cells with the lowest suppression of cell proliferation. In the dog model of experimental pulpitis, luteolin treatment suppressed the expression of pPKR-, MPO-, and CD68-positive cells in pulp tissues, whereas guaiacol-parachlorophenol treatment caused coagulative necrosis and disruption. In a mouse model of endodontic-periodontal complex lesions, luteolin treatment significantly decreased MV-induced alveolar bone resorption. Conclusion: Luteolin is an effective and safe compound that inhibits PKR activation in DP-derived MVs, enabling pulp preservation.


Asunto(s)
Pérdida de Hueso Alveolar , Clorofenoles , Pulpitis , Perros , Humanos , Ratones , Animales , Luteolina/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Microtomografía por Rayos X , Proteómica , Inflamación/metabolismo , Guayacol , Pulpa Dental/metabolismo
2.
Biochem Biophys Rep ; 38: 101656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38379857

RESUMEN

Introduction & objectives: Stem cell therapy for regenerative medicine has been sincerely investigated, but not still popular although some clinical trials show hopeful results. This therapy is suggested to be a representative candidate such as bone defect due to the accident, iatrogenic resection oncological tumor, congenital disease, and severe periodontitis in oral region. Recently, the Bio-3D printer "Regenova®" has been introduced as an innovative three-dimensional culture system, equipped scaffold-free bio-assembling techniques without any biomaterials. Therefore, we expected a mount of bone defect could be repaired by the structure established from this Bio-3D printer using osteogenic potential stem cells. Material & methods: The gingival tissue (1x1 mm) was removed from the distal part of the lower wisdom tooth of the patients who agreed our study. Human Gingival Mesenchymal Stem Cells (hGMSCs) were isolated from this tissue and cultured, since we confirmed the characteristics such as facile isolation and accelerated proliferation, further, strong potential of osteogenic-differentiation. Spheroids were formed using hGMSC in 96-well plates designed for low cell adhesion. The size of the spheroids was measured, and fluorescent immunostaining was employed to verify the expression of stem cell and apoptosis marker, and extracellular matrix. Following four weeks of bone differentiation, µCT imaging was performed. Calcification was confirmed by alizarin red and von Kossa staining. Fluorescent immunostaining was utilized to assess the expression of markers indicative of advanced bone differentiation. Results: We have established and confirmed the spheroids (∼600 µm in diameter) constructed from human GMSCs (hGMSCs) still maintain stem cell potentials and osteogenic differentiation abilities from the results that CD73 and not CD34 were expressed as stem cell positive and negative marker, respectively. These spheroids were pilled up like cylindal shape to the "Kenzan" platform of Bio-3D printer and cultured for 7days. The cylindal structure originated from compound spheroids were tried to differentiate into bone four weeks with osteogenic induction medium. The calcification of bio-3D printed bone-like structures was confirmed by alizarin red and Von Kossa staining. In addition, µCT analysis revealed that the HU (Hounsfield Unit) of the calcified structures was almost identical to that of trabecular bone. Immunofluorescent staining detected osteocalcin expression, a late-stage bone differentiation marker. Conclusion: For the first time, we have achieved the construction of a scaffold-free, bone-like luminal structure through the assembly of spheroids comprised of this hGMSCs. This success is sure to be close to the induction of clinical application against regenerative medicine especially for bone defect disease.

3.
Front Physiol ; 14: 1298813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156070

RESUMEN

Drug-induced gingival overgrowth (DIGO), induced by certain immunosuppressive drugs, antihypertensive agents, and antiepileptic drugs, may contribute to the formation of deeper periodontal pockets and intractableness in periodontitis. To date, multiple factors such as enhanced matrix production, inflammation, and reduced matrix degradation might be involved in the pathogenesis of DIGO. We have previously reported that SPOCK-1, a heparan sulfate proteoglycan, could affect gingival thickening by promoting epithelial-to-mesenchymal transition (EMT) in gingival keratinocytes. However, few studies have investigated whether a combination of these factors enhances the DIGO phenotype in animal models. Therefore, we investigated whether SPOCK-1, periodontal inflammation, and cyclosporin-A (CsA) could cooperatively promote gingival overgrowth. We first confirmed that Spock-1 overexpressing (Spock1-Tg) mice showed significantly thicker gingiva and greater alveolar bone loss than WT mice in response to ligature-induced experimental periodontitis. DIGO was induced by the combination of CsA administration and experimental periodontitis was significantly enhanced in Spock1-Tg mice compared to that in WT mice. Ligature-induced alveolar bone loss in CsA-treated Spock1-Tg mice was also significantly greater than that in CsA-treated WT mice, while being accompanied by an increase in Rankl and Col1a1 levels and a reduction in matrix metalloprotease expression. Lastly, SPOCK-1 promoted RANKL-induced osteoclast differentiation in both human peripheral blood mononuclear cells and murine macrophages, while peritoneal macrophages from Spock1-Tg mice showed less TNFα and IL-1ß secretion than WT mice in response to Escherichia coli lipopolysaccharide. These results suggest that EMT, periodontal inflammation, and subsequent enhanced collagen production and reduced proteinase production contribute to CsA-induced DIGO pathogenesis.

4.
Front Cell Dev Biol ; 10: 1061216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531939

RESUMEN

The expression profiles of exosomal microRNAs (miRNAs) are regulated by the microenvironment, and appropriate priming with mesenchymal stem cells (MSCs) is one of the strategies to enhance the paracrine potency of MSCs. Our previous work demonstrated that exosomes from tumor necrosis factor (TNF)-α-primed human gingiva-derived MSCs (GMSCs) could be a therapeutic tool against periodontitis, and that TNFα-inducible exosomal miR-1260b is essential for the inhibition of alveolar bone loss. However, the precise molecular mechanism underlying miR-1260b-mediated inhibition of osteoclastogenesis is not yet fully understood. Here, we found that the activating transcription factor (ATF)-6ß, a novel miR-1260b-targeting gene, is critical for the regulation of osteoclastogenesis under endoplasmic reticulum (ER) stress. An experimental periodontal mouse model demonstrated that induction of ER stress was accompanied by enhanced ATF6ß expression, and local administration of miR-1260b and ATF6ß siRNA using polyethylenimine nanoparticles (PEI-NPs) significantly suppressed the periodontal bone resorption. In periodontal ligament (PDL) cells, the ER stress inducer, tunicamycin, enhanced the expression of the receptor activator of NF-κB ligand (RANKL), while miR-1260b-mediated downregulation of ATF6ß caused RANKL inhibition. Furthermore, the secretome from miR-1260b/ATF6ß-axis-activated PDL cells inhibited osteoclastogenesis in human CD14+ peripheral blood-derived monocytes. These results indicate that the miR-1260b/ATF6ß axis mediates the regulation of ER stress, which may be used as a novel therapeutic strategy to treat periodontal disease.

5.
Sci Rep ; 12(1): 13344, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922474

RESUMEN

Immunoregulatory properties of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising. Gingival tissue-derived MSCs (GMSCs) have unique immunoregulatory capacity and secrete large amounts of EVs. Recent findings suggest that priming MSCs with inflammatory stimuli is an effective strategy for cell-free therapy. However, the precise mechanism by which the contents of EVs are customized has not been fully elucidated. Here, we show that EVs derived from GMSCs primed with a combination of two pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-α (IFN-α), synergistically promote anti-inflammatory M2 macrophage polarization by increasing the expression of cluster of differentiation 73 (CD73) and CD5 molecule-like (CD5L). Expression of CD73 by TNF-α/IFN-α stimulation was transcriptionally upregulated by the activation of mammalian target of rapamycin signaling and nuclear translocation of hypoxia-inducible factor 1α in GMSCs. TNF-α/IFN-α treatment also significantly increased the expression of CD5L mRNA via the transcription factor DNA-binding protein inhibitor ID3 and liver X receptor. Interestingly, exosomal CD5L is a prerequisite for the synergistic effect of EVs-mediated M2 macrophage polarization. These results indicate that combined pre-licensing with TNF-α and IFN-α in GMSCs is ideal for enhancing the anti-inflammatory function of EVs, which contributes to the establishment of a therapeutic tool.


Asunto(s)
Vesículas Extracelulares , Factor de Necrosis Tumoral alfa , Vesículas Extracelulares/metabolismo , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , Activación de Macrófagos , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Biochem Biophys Res Commun ; 513(1): 186-192, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30952424

RESUMEN

O-Linked glycan liberation from proteins through reductive beta-elimination and hydrazinolysis is widely used, but have yet to satisfy the recent needs for glycan analysis in glycan biomarker research and microheterogeneity evaluation of biopharmaceutical glycosylation. Here, we introduce an alternative method by using hydroxylamine and an organic superbase, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and optimize the reaction conditions. The developed method afforded comparable results to those of hydrazinolysis, but with less degraded products. In addition, we examined the compatibility of the optimized O-linked glycan liberation with denaturant and detergents. The optimized method also released glycans containing NeuGc without degradation or deacylation. To demonstrate the feasibility of the developed method, we analyzed O-linked glycans of porcine submaxillary mucins separated by supported molecular matrix electrophoresis (SMME) which is previously developed to characterize mucins. The method for O-linked glycan liberation and fluorescent labeling presented here was easy and rapid, and will be practically useful for O-linked glycan analyses.


Asunto(s)
Glicoproteínas/química , Hidroxilamina/química , Polisacáridos/análisis , Animales , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Glicómica/métodos , Glicosilación , Mucinas/química , Polisacáridos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Porcinos
7.
Glycoconj J ; 33(6): 917-926, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27318476

RESUMEN

Proteins carrying sulfated glycans (i.e., sulfated glycoproteins) are known to be associated with diseases, such as cancer, cystic fibrosis, and osteoarthritis. Sulfated glycoproteins, however, have not been isolated or characterized from complex biological samples due to lack of appropriate tools for their enrichment. Here, we describe a method to identify and characterize sulfated glycoproteins that are involved in chemical modifications to control the molecular charge of the peptides. In this method, acetohydrazidation of carboxyl groups was performed to accentuate the negative charge of the sulfate group, and Girard's T modification of aspartic acid was performed to assist in protein identification by MS tagging. Using this approach, we identified and characterized the sulfated glycoproteins: Golgi membrane protein 1, insulin-like growth factor binding protein-like 1, and amyloid beta precursor-like protein 1 from H2171 cells, a small cell lung carcinoma cell line. These sulfated glycoproteins carry a complex-type N-glycan with a core fucose and 4'-O-sulfated LacdiNAc as the major glycan.


Asunto(s)
Glicoproteínas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Línea Celular Tumoral , Humanos
8.
Anal Chem ; 81(15): 6140-7, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19572564

RESUMEN

Sulfated glycoproteins are of growing importance for biomarker discovery, as well as for investigating molecular recognition processes. Mass spectrometry (MS) has become a powerful technique for the characterization of glycans and glycoproteins. However, characterization and detection of sulfated glycopeptides by MS is difficult because of the low abundance and low ionization efficiency of these molecules. To overcome this problem, we developed a novel enrichment procedure for sulfated glycopeptides. The procedure consists of anion exchange chromatography and a sulfate emerging (SE) method which controls the net charge of peptides by utilizing limited proteolyzes and modification with acetohydrazide. Using this procedure, we are able to enrich and characterize the sulfated glycopeptides of bovine luteinizing hormone (bLH). Furthermore, we demonstrate the enrichment and detection of sulfated glycopeptides from a complex mixture comprising human serum spiked with bLH at a concentration of 0.1%.


Asunto(s)
Cromatografía por Intercambio Iónico , Glicopéptidos/química , Glicopéptidos/aislamiento & purificación , Hormona Luteinizante/química , Fragmentos de Péptidos/química , Sulfatos/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Glicopéptidos/sangre , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Anal Chem ; 80(13): 5211-8, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18484736

RESUMEN

Recently, glycans have been recognized as valuable biomarkers for various disease states. In particular, sialoglycans, which have sialic acids at their terminal end, are likely to have relevance to diseases such as cancer and inflammation. Mass spectrometry (MS) has become an indispensable tool for biomarker discovery. However, matrix-assisted laser desorption ionization (MALDI) MS of sialoglycans normally causes loss of sialic acid. Methylesterification or amidation of carboxyl functionality in sialic acid has been reported to suppress the loss of sialic acids. We found that the modifications of alpha2,3-linked sialic acids proceed less efficiently than those at alpha2,6-linkages. Furthermore, the modifications of the alpha2,3-linked sialic acids are incomplete. This variability in the extent of derivatization presents a major problem in terms of glycan biomarker discovery using MALDI MS. In this study, we developed a novel amidation using acetohydrazide which can completely modify both types of linkages of sialoglycans. With the use of this method, we demonstrate MS profiling of N-linked glycans released from a bovine fetuin which is rich in alpha2,3-linked sialic acids.


Asunto(s)
Polisacáridos/análisis , Ácidos Siálicos/análisis , Ácidos Siálicos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Amidas/química , Animales , Secuencia de Carbohidratos , Bovinos , Cromatografía Líquida de Alta Presión , Ésteres/química , Datos de Secuencia Molecular , Polisacáridos/química , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/química
10.
Brain Res ; 991(1-2): 113-22, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14575883

RESUMEN

We examined the influence of nucleobases, nucleosides, nucleotides, and their analogs on rat cerebellar Purkinje cells in primary culture and found that the number of cultured Purkinje cells was greatly increased by the nucleobase adenine. Purkinje cells were cultured for 13 days in vitro in the presence of various reagents, and the resulting cell numbers were counted. As a result, the nucleobase adenine was most effective at increasing the number of Purkinje cells among the reagents tested. In the cultures supplemented with adenine in millimolar concentrations (1-2 mM), the number of Purkinje cells was increased by up to 30 times the number of Purkinje cells in the control. Adenine had no affect on the number of granule cells, and it reduced the number of astrocytes, both of which were cocultured in cerebellar primary cultures. Stimulation of purinoceptors by adenosine and adenosine 5'-triphosphate (ATP) did not result in an increase in the number of Purkinje cells. Furthermore, the adenine effect on Purkinje cells was not related to PKA, as determined with the use of a PKA inhibitor. Our findings suggest that adenine exerts neurotrophic effects that have not been described to date; in particular, the present study demonstrated that adenine increases the number of Purkinje cells by an unknown mechanism.


Asunto(s)
Adenina/análogos & derivados , Adenina/farmacología , Factores de Crecimiento Nervioso/farmacología , Células de Purkinje/efectos de los fármacos , Adenosina/farmacología , Adenosina Trifosfato/farmacología , Animales , Astrocitos/efectos de los fármacos , Recuento de Células , Células Cultivadas , Técnicas de Cocultivo , Inhibidores Enzimáticos/farmacología , Feto , Inmunohistoquímica , Células de Purkinje/fisiología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...